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Abstract---Starting from the general formula of Haber et al. (1973) for the drag force arising when two 
drops are approaching each other along their line of centers in an unbounded liquid, asymptotic expressions 
for great and small separations are derived. In the former case a generalization of the well-known formulae 
of Ryhezynski (1911), Hadamard (1911) and Lorentz (1907) is obtained. In the latter, new approximate 
formulae, valid for great and small drop viscosity are derived. The approach of a liquid drop toward a solid 
plane boundary is considered as well. 

1. INTRODUCTION 
From the fluid dynamic point of view interest in emulsions is mainly due to the coupling of the 
flow in both phases--the drops and the continuous phase. This is, however, one of the reasons 
for the complicated character of the processes in these systems. There are also other effects 
which interfere with the flow coupling and make the theoretical treatment of emulsion 
hydrodynamics rather involved. For example, the experimental studies of Sonntag & Strenge 
(1970), Hartland (1967, 1969), Scheele & Leng (1971), McKay & Mason (1963) reveal, that due 
to viscous forces, emulsion droplets are deformed when approaching another interface. The 
initial deformation of the droplets surfaces, usually called a "dimple", evolves with closer 
approach and finally a film with nearly uniform thickness forms between the droplets. 

Because of the complexity of these process no consistent theory incorporating all these 
effects has been developed; only particular cases have been considered. For example, in the 
papers of Murdoch & Leng (197I), Reed et al. (1974), Ivanov & Traykov (1976) the flow pattern 
in thin emulsion films with plane-parallel interfaces has been analyzed. On the other hand, 
Radoev & Ivanov (1972) and Dimitrov & Ivanov (1975) have shown, that the deformation (due 
to viscous forces) of a gas bubble moving toward an interface can be considered as a small 
perturbation of the primary spherical shape. That is why it is interesting to study the mutual 
approach of two underformable spherical drops when the distance between them is small. This 
is a necessary initial step to the solution of the more general problem of drops with deformable 
interfaces. 

We shall consider two important particular systems: (1) two drops approaching each other 
along their line of centers, (2) a single drop moving normally to an infinite solid plane surface. 
The comparison between these systems is of considerable physical interest because in the 
former case both interfaces are freely moving, whilst in the latter case the interface solid/fluid 
is tangentially immobile. It will be shown in section 4 that the change of the boundary condition 
results in a striking difference in the behaviour of these systems. We shall assume that the 
system considered is free of surface active impurities and the continuous phase is an 
unbounded immobile fluid. A steady state process at low Reynolds numbers is considered. Bart 
(1968) has solved this problem for a droplet approaching a flat interface and Wacholder & 
Weihs (1972) for a slow motion of a fluid sphere in the vicinity of another sphere or a plane 
boundary. Their solutions were generalized by Haber et al. (1973) for two droplets of different 
radii and viscosities, suspended in a third unbounded fluid. The purpose of our treatment is to 
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obtain asymptotic expressions valid at large and small separations. These asymptotic formulae 
lead to some interesting conclusions, which are difficult to deduce from the complicated general 
solution. 

The complete solution required derivation of expressions for for the drag force, the stream 
function and the pressure field. We confine ourselves to the drag force F only, since it is one of 
the most relevant characteristics of the process. The respective equations for the two systems 
under consideration are obtained from the general solution of Haber et al. (1973). When two 
equal drops with radii R~ and viscosities # are moving toward each other with a velocity V, we 
have: 

F = 4*r/~* Va ~ K,{2[(2n + 1) sinh 2a + 2 cosh 2a - 2e -(2~+1~] 
n=l  

/ +/2[(2n + 1) 2 cosh 2a + 2(2n + 1) sinh 2a - (2n + 3)(2n - 1) + 4 e-(Zn+'~]} 

{4sinh(2n~3a) sinh(~-~a)+~[2sinh(2n+l)a-(2n-1)sinh2a]},  [1] 

Here #* is the viscosity of the dispersion medium. 
For an emulsion drop moving with velocity V normally towards a solid plane the drag force 

has the form: 

F = 8¢r#* Va ~ K,,{ (2n + 1) sinh 2a + 2 cosh 2a + 2e -(~+~)" 

+/2[(2n + 1) 2 sinh 2 a + (2n + 1) sinh a + 2 - 2e-a '+ '~]} /  

{2 sinh (2n + 1)a-(2n+l)sinh2a+~[4sinh2(~-[a)-(2n+l)2sinh2a]}.  [2] 

The following notations are introduced above: 

(n + 1) 
K, = (2n +2)(2n - 1); fi =/z//z*; a = Rc sinh a; Rc + h = a cptgha [3] 

and (2Rc + h) is the distance between the centres of the spheres. 

2. MUTUAL APPROACH OF TWO DROPS 

Unlike the case of a single drop moving in an infinite liquid medium, considered by 
Rybczinski 0911) and Hadamard (1911), the drag force in [1] depends on the dimensionless 
parameter a (i.e. on the ratio h/R~). Thus, the expression for the drag force could be written in 

the form: 
F = 6~'/~* VRd(a, fi). 

Two limiting cases are possible with respect to the values of a: a ~, 1 and a ,~ 1 correspond- 
ins to h / R ~  1 and h / R ~ l  respectively. From [3] it follows, that e x p ( - a ) = R d 2 h  at a~,  1. 
We can simplify[l] by introducing this approximation and expanding the terms of the sum in 
series with respect to the ratio RJh. Since only the term with n = 1 gives contribution to the 
linear approximation, we thus obtain: 

,. . , , .  2/3+/2  {,+2/3+~R~'~ [4] 
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The factor before the brackets coincides with Rybczinski-Hadanard's equation. Since [4] is 
valid for arbitrary values of the viscosity ratio/2 it gives as a limiting case (with ~ ~oo) the drag 
force for the case of two solid spheres at great separation. The resulting relation is analogous to 
that derived by Lorentz (1907), see his [14]. For the behaviour of emulsions, the other 
asymptotic case, a < 1, i.e. h/Rc,< 1 is of greater importance. From [3] we have the following 
approximate relations: 

a ~. V(2Rch) ;  a ~- %~(2hiRe). [5] 

Analysis of [1] in this case is more complicated. The hyperbolic functions in the sum depend 
on the product na and since n-~ oo their expansion in power series with respect to n will not 
give the correct asymptotic result. Indeed, if one uses the approximation sinh (na)~-an the 
series in [1] will diverge. For the case of a solid sphere approaching a plane solid surface Cox & 
Brenner (1967) have developed a systematic method for deriving small gap width asymptotic 
expressions. Their method is well suited for our problem, but its application leads to very 
complicated calculations because of the presence of the terms with/2 in [1] and [2]. On the 
other hand we are interested only in the leading terms (at a ~0)  of the asymptotic series. 
[These terms correspond to the term with 1/~ in [5.3] of Cox & Brenner (1967).] Since in this 
limit the outer solution is immaterial, it seems justified to carry out the summation in [1] and [2] 
by replacing there the hyperbolic functions by the approximate expressions: 

sinh (ha)  ~- na e'~; cosh (na)  ~- e '~. [6] 

With na < 1 (inner solution), [6] gives the correct results and with na ~ 1 (outer solution) it 
qualitatively describes the asymptotic behaviour of sinh (na)  and cosh (na).  In section 4 we 
shall compare some results, derived by this semi-intuitive asymptotic solution and by the 
systematic approach of Cox & Brenner (1967). 

By means of [6], from [1] we have 

F = 96¢:l~* V R---x~ ~ ,  n(n + 1) (2n + 1)a +/2 e_(2n+l)  a 
a n=l (2n + 3)2(2n - 1)2 3 + (2n + 1),~/2 

[7] 

Carrying out the summation in [7] (see appendix I) we obtain an equation for the drag force 
at a < l, which is valid at arbitrary values of/2: 

3 , R c .  9// /or 2 . 2 \  . 4 a 2 - B 2 r , ,  9 - f l  z ( l n 2 _ 2 a e ~ / # ) i ) _  
F= ~.p. V ~ 19~ ~,T- a In ~) + 4 (3_-~ L, (3 +-~ 1]} 

[s] 

where 

f oo e-3[l+(l/#)lax 
= a~ ~ (~/l~*)X/(2h/R~); I = j~ I - e -2~ dx. [91 

When the viscosity of the drops is great (/2 ~ 1), fl can reach high values, even if hlRc < 1. 

Since a /$  < I, [A.8] can be substituted for I (see appendix II) and the remaining terms in curly 
brackets in[8] can be expanded in a power series with respect to//-1. Keeping only the linear 
term in the series we obtain: 

MF Vol. 4, No, 516--1 



566 V.N. BESHKOV et al. 

The factor before the brackets in [10] is equal to the drag force F 7 = 3~rp.* VRc2/2h for the 
case of two solid spheres at small distance (h/Rc "g. 1). It can be obtained by direct integration of 
the lubrication theory equations. As expected, the mobility of the liquid interface decreases the 
drag force (F < F~3. This effect becomes more appreciable with decreasing thickness h. 

The case/ / ,~ 1 can be realised either at small/2 (i.e. when the drop viscosity is low) or at 
high ti but very small distances (h/Rc ,~. 1). The integral I in [8] depends both on a and on the 
ratio (p/a) = ti. Therefore, two different asymptotic expansions are possible (recall that a "~ 1): 
first, w i th / /<  a the asymptotic form is derived by substituting [A.9] for I (see appendix II) in 
[8] and expanding the remaining functions in curly brackets in power series with respect to / /  
and// /a;  second, with fl >> a we substitute [A.8] for I (see appendix II) in [8] and expand the 
remaining functions in curly brackets in [8] in power series with respect to/3 and a/$. Thus we 
find the following asymptotic equations for the drag force: 

F = 2~r#* VR~ in (Rc/h) with /2 ,~ 1, [11] 

F = (3¢r318)#VRcX/(RJ2h) with /i } 1. [12] 

Equation [11] corresponds to the case of two nondeformable gas bubbles with freely moving 
surfaces. It does not follow from the lubrication approximation, because the drag force with 
freely moving interfaces depends considerably on the energy dissipation in regions rather 
remote from the axis of symmetry, where this approximation is no longer valid. However, 
Dimitrov & Radoev (1976) were able to obtain a more general form of the lubrication 
approximation which allowed them to derive directly [11]. 

3. MOTION OF A DROP T O W A R D S  A SOLID P L A N E  

The analysis of [2], giving the drag force for the case of an emulsion droplet approaching a 
solid plane, is similar to that presented above. At a >> 1 [2] yields: 

-6~r *VR 2/3+/2 (1492 /3+t2  
P _  , ,  s [13] 

The derivation of [13] entirely coincides with that of [4]. At h/Rc--}oo [13] gives Rybczinski 
& Hadamard's formula, while at/~--}oo it gives Lorentz' (1907) relation 

F 6~r#*VR~(1 9Re\  = [14] 

At a '~ 1, using [6], from [2] we obtain: 

F = 384~rt~* V Rc ~ Kn 1 + (2n + 1)fl e_(2n+l),~ 
a ~1"1= (2n + 3)(2n + 1)24+(2n + 1)$ [ts] 

Since the further treatment of [15] is similar to that of [7], for the sake of brevity we quote the 
final results only. 

From [15] at/3 } 1 we find: 

F = 6 ~ ' # * V - ~  " 9 ~ 2  

Vk2h/ u/" [16] 

At ~ --}® [16] yields the well known Taylor's formula for the drag force F's = 61r#* VRc2/h at 
the approach of a solid sphere towards a solid plane, see Brenner (1962). 
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At/3 ,~ 1 [15] yields. 

3 * V - ~ ( 1  992 F : ( 1  9~r2 ,/2h\ 

The factor F',I4 before the brackets in [17] is the drag force for the case of an underform- 
able gas bubble, approaching a solid plane. This result also can be deduced from the lubrication 

theory. 

4. DISCUSSION 

It is worth noting that h a R, a significant difference exists between the drag forces for the 
processes of mutual approaching of two emulsion droplets and of a droplet approaching a solid 
plane. For relatively great separations and highly viscous droplets, i.e. at # ~, 1, this difference 
is mainly due to geometrical factors. Then the droplets behave like solid spheres and the leading 
terms in the respective equations[10] and [16] (the factors before brackets) are F'~ and 
F~ = 4b'~,. This is a natural consequence of the similar mobilities of all interfaces. 

The situation is however quite different at fl ,~ 1. The leading term in the drag force for the 
system droplet/solid plane (see [17]) then increases four times (the droplet behaves like a 
bubble) but has the same functional dependence on the parameters of the system as in the case 
/3 ~, 1 (of. [16] and [17]). This is due to the tangential immobility of the solid plane which does 
not allow the liquid flow in the dispersion medium and hence in the droplet, to grow very 
strongly even when fi ~0 .  For this reason the energy dissipation in the droplet is always 
negligeable. 

In the case of two droplets at very small distance h, a can become sufficiently small to ensure 
the validity of the condition//= ag  ,~ 1 even when/~ ,> 1. The respective equation [12] for the 
drag force is entirely different both from [16] and [17]. A peculiar feature of this equation is the 
independence of the drag force on the viscosity of the dispersion medium. A similar 
result was obtained by Ivanov & Traykov (1975) for a plane-parallel film, formed 
between two droplets. This effect is related to the mobility of both interfaces of this system 
which leads to a predominant dissipation of energy in the droplets. When the droplet viscosity 
if relatively low (/2 ,~ 1) it is possible for the liquid motion within the droplets to be intensive, 
but the energy dissipated there is sufficientIy small to be neglected. The droplets behave then 
like bubbles and the drag force is given by [11]. The mobility of the interfaces in this system 
strongly facilitates the liquid flow and the drag force is of several orders of magnitude smaller 
than the drag force F',/4 for the system bubble/solid interface (more exactly, their ratio equals 
(4hl3Rc) In (Rdh)). 

The exact expression for the drag force for a bubble, approaching a gas-liquid interface (see 
[30] with ~z =/~* and/Zl =/z3 = 0 in Bart (1968)) differs from the respective equation for two 
bubbles. The latter follows from [1] with/i  = 0 only by a factor 4 in the RHS, so that the drag 
force will be four times greater for the former system. Despite the great difference in interface 
mobility, the ratio of the drag forces for these systems is the same as for the systems solid 
spherelsolid plane and two solid spheres: F'/F'~ = 4. This confirms the conclusion that the 
drastic difference in the behaviour between the systems two droplets and droplet-solid plane at 
/ / ~  1 is due to the tangential immobility of the solid plane. 

In order to check the validity of our asymptotic procedure, we give now a brief derivation of 
[11] by means of the method of Cox & Brenner (1967). We have chosen for this verification the 
case of two bubbles, because the correctness of our procedure for solid spheres (/i -* oo) in the 
limit a ~ 0  is confirmed by the fact that [10] and [16] give correctly the respective limiting 
expressions. If in the other limiting case of two bubbles (~ = 0) the results are also correct, it 
can be supposed that they will not be wrong for intermediate values of ~i. 
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With/i  = 0 from [1] in the limit a ~ 0  we have 

F = 2,r#*a ~ K.  (2n + 1) sinh 2a + 2 cosh 2a - 2 e -¢2"+~ 

, ,= t  sinh(2n;____Q3a)sinh(~__la) 
[18] 

= 4*rl** VR~ ~ K. 
S = I  

(2n + 1)a + 1 - e - ( 2 s + t ) a  

sinh ( ~ - ~  a )  sinh ( ~ - ~  a)" 

Let us introduce the integers Ni and No = N~ + 1, Ni being in the region of validity of both the 
inner and the outer expansions. In the inner expansion we use the approximations sinh x ~-x 
and e -x= 1 -  x and in the outer expansion we can neglect with respect to h the terms of the 
order of unity. Thus, fi'om [18] we get (see also[3]) 

P8 n=Ni n(n + 1)(2n + 1) j. 1 f® 2n + 1 - e  -z"  dn] R4*r# * Vec 
[a- ,=t ~" (2n +3)2(2n- 1)2"4iN0 sinhZan 

Ot 
J 

nffi_N i | I /-oo 1 , , ~ - cosh x sinh x - sinh 2 x 
= - 5 + 2  N - - + - J N  x dx. 

,ffit 2 n - 1  2 0~ sinhZx 
[19] 

Since N,. increases strongly as a decreases, we can replace in [19] both Ni and No by the same 
limiting value Nm. Then the most important terms in the sum and in the integral in [19] will be 
(1/2) In Nm and - 2  In (Nma) respectively. Hence from [19] (see also[5]) we obtain: 

1, gc 
b74,r/** VRc = In N,, - In (Nma) + . . . . .  In a + . . .  ~ ~ m y .  [20] 

The last limiting form of [20] coincides with [11]. This confirms the correctness of our 
procedure when the leading term, corresponding to a ~ 0 ,  is calculated. Although the first 
correction to the leading term is immaterial for the present work, we have calculated it for the 
system solid sphere-solid plane, using our procedure. We have obtained the same functionality, 
In a, as in [2.47] of Cox & Brenner (1967), but the numerical coefficient before this term is 2/3 
instead of the correct value 2/5. This result suggests, that with higher values of a, when the 
outer expansion becomes important, our procedure will lead to expressions which are correct 
only qualitatively (cf. the comment [6]). 

Acknowledgement--We are indebted to the Referees for having drawn our attention to the very 
important work of Cox & Brenner. 
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APPENDIX I 

Derivation of [8] 
The algebraic factor in the general term of the sum in [7] is represented as a sum of common 

fractions: 

n(n + 1) (2n + 1)a + / i _  A~ A2 B2 + B~ + C 
(2n+3)2(2n+l)23+(2n+l)fl (2n+3)2+~-3+(2n--"~-l) ~ 3+(2n+1)~; 

[A.1] 

and the 'constants' Ai, A2, Bb B2 and C, which are functions of a and/], are determined using 
the standard procedure. Putting [A.I] in [7] and suitably rearranging the terms in the sum, we 
obtain: 

r :  96,,,<, v { rA e" + B,. A, e" + B, 
a = L (2n - 1) 2 "t 2n - 1 C 1)fl]e_t~+,)~_A2(e.+e_~_2 a) 

3+(2n + 

[A.21 

The summands in [A.2] are transformed, making use of the properties of the geometric 
progression, as follows: 

~ e-(2n+l)a 

n=l 2 n - 1  

= e -2" In [(1 + e-~)/(l - e-")l/2--, In (2/-,)12; [A.31 



570 v.N. BESHKOV et al. 

e -(2n + I)a 

ffi 3 + (2n + 1)B ~ e~"/~ "1 - e -2'~ dx [A.5] 

The final limiting expressions in [A.3] and [A.4] are valid for a '~ 1. Substituting in [A.2] the 
values of A~, Aa, B~, B2 and C and [A.31-[A.51, we get [81. 

APPENDIX II 
Asymptotic representation of the integral I in [8] 

With a ,~ 1, the integral 

~.oo e-3(1+ i/~)ax 

I = J l  1 - e  -~x dx [A.6] 

has two asymptotic representations depending on the ratio ah9 = 11~. 
When allJ '~ l we can expanded I in power series with respect to al/3: 

~® e -~ a r ® x e -~ . 
I=i, ~dx-3~j, -~2--~ax+ ..., [A.71 

where the integrals can be taken in closed form. In the limit a ,~ 1 the result reads: 

I -*~ [ -  l + ~ l n a +  ~ 

When ale ~" l, we have (note that a ~, 1): 

I ~- ~lf~ ® e-~'+'' 'xx dx = - ~al E,[- 3(1 + l / , )a ]  ~ 6fl-~a e - ~ '  (1 - 3fi-~a) ; [A.9] 

where 

is the exponential integral. 

oo --t 


